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Abstract. With the formal similarity between three-dimensional layered systems and one-
dimensional chains of potential wells in mind, we discuss the wavefunction formulation of the
Korringa–Kohn–Rostoker (KKR) formalism in one spatial dimension. We show that screening
allows the construction of wavefunctions for such interesting non-periodic chains as two semi-
infinite bulks separated by a spacer segment. We also discover a powerful analogue of the Friedel
sum usually associated with scattering of electrons by point defects.

1. Introduction

Recently, multiple-scattering methods for solving the self-consistent Schrödinger equation for
electrons in periodic solids, such as the Korringa–Kohn–Rostoker (KKR) [9, 10] and linear
muffin-tin orbital (LMTO) methods, have undergone a remarkable revolution. In short, the
problem has been reformulated in terms of scattering from a reference system [11], which is
not free space, and the freedom of choice offered by the arbitrariness of the reference system
has been exploited to make the structure constants of the theory short ranged [1,2,15,18]. One
of the more spectacular consequences of this screening transformation is that it rendered the
calculation of the electronic structure of semi-infinite systems, such as a crystal with a surface,
tractable [15]. In this paper we wish to comment on the way in which these novel calculations
proceed.

Usually, for infinite bulk systems, the KKR band theory is presented as a Green’s function
method whilst the LMTO approach is developed in the language of wavefunctions. Although
the two approaches are strictly equivalent in numerical implementations, they offer different
sets of advantages and disadvantages [16]. Clearly, this is bound to be the case for problems
involving surfaces and interfaces as well, and thus, both need to be developed. Since the
applications of the screened KKR and LMTO methods to such problems have been exclusively
Green’s function calculations, we thought it worthwhile to explore the salient features of the
corresponding wavefunction formulation. In this paper we report our findings in the context
of a very simple, but nevertheless very suggestive, model and illustrate them with explicit
calculations.

In sections 2 and 3.1 we set out the formalism and define the problem. The rest of
section 3 is taken up with a formal solution for the wavefunction. It appears here to be helpful
to introduce a transfer matrix and phase shifts in a way adapted to the present situation. This
section concludes with explicit calculations of generalized phase shifts which can also be
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interpreted as the integrated density of states as will be shown in section 4. Here, phase shifts
are defined directly via the asymptotic behaviour of wavefunctions. They are presumably
the same phase shifts as those discussed in reference [17] where they are defined in terms of
the characteristic eigenvalue-resolved integrated density of statesNλ(ε). In this reference the
connection of phase shifts to quantum well states is shown and a method to calculate them in
a Green’s function formalism is developed. In addition to providing a new way of computing
them, our wavefunction approach sheds new light on the whole concept of phase shift in the
present context.

Section 4 deals with the calculation of expectation values and we derive an analogue
of Friedel’s formula [8] for the integrated density of states, equation (48) below, induced
by a slab inserted between two semi-infinite pieces of the host. This section is closed with a
presentation of numerical results for charge oscillations in an inhomogeneous chain of potential
wells analogous to a tri-layer system in three dimensions. Our comments are summarized in
section 5.

2. Spherical harmonics for one-dimensional problems

In order to keep the present paper as self-contained as possible, we repeat here the basic notions
necessary in the formulation of the KKR formalism in one dimension [4,5,12,13].

Let Ri be a point on the real axis. We can then describe every pointx by giving its
distanceri = |x − Ri | and the direction̂xi = (x − Ri)/ri with respect toRi . Evidentlyx̂i is
the one-dimensional analogue of the angles2 andφ in three-dimensional polar coordinates.
With this convention we can write for everyx

x = ri x̂i +Ri. (1)

In general, any functionf (x) can be written as a sum of an even and an odd contribution with
respect toRi :

f (x) = f0(ri)Y0(x̂i) + f1(ri)Y1(x̂i) (2)

with

f0(ri) = 1√
2
(f (Ri + ri) + f (Ri − ri))

f1(ri) = 1√
2
(f (Ri + ri)− f (Ri − ri))

(3)

and

Y0(x̂i) = 1√
2

Y1(x̂i) = x̂i√
2
. (4)

This expansion is unique and can be viewed as the analogue of the spherical harmonics exp-
ansion in three dimensions.

We will use the following complete set of solutions to the free-particle Schrödinger
equation:

j0(
√
Er) = cos(

√
Er) j1(

√
Er) = sin(

√
Er) (5)

and

h0(
√
Er) = ei

√
Er h1(

√
Er) = −iei

√
Er . (6)

Normally, all of these functions will appear in products containing the corresponding one-
dimensional spherical harmonicYl . Therefore, we will use the notation

jL(E, xi) = jL(
√
Eri)YL(x̂i) L = 0, 1 (7)

and similarly forn andh when appropriate.
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3. Solving the screened KKR equation for the wavefunction

3.1. The screened KKR equation

The multiple-scattering KKR equations for the wavefunction amplitudesbiL read as follows
[5,12]: ∑

i ′,L′

(
(t iL(E))

−1δii ′δLL′ − gii ′LL′(E)
)
bi
′
L′ = 0 (8)

where t iL is the L-component of the scattering matrix of the potential centred at sitei.
Remember thatL in the one-dimensional case considered here can take only the values 0 and 1
corresponding to the two different point symmetries that a function can have in one-dimensional
space, whereas in the three-dimensional caseL = (l, m) runs over all the infinitely many
angular momentum (l) and magnetic (m) quantum numbers.gii

′
LL′ are the structure constants

which in the one-dimensional case have a very simple analytic form [4,5,12]. The coefficients
bi
′
L′ determined by the KKR equation are related to the wavefunction in the interstitial region

near sitei by

ψ(E, x) =
∑
L

biL
(
i
√
E(tiL(E))

−1jL(E, xi) + hL(E, xi)
)
. (9)

After applying a screening transformation (see appendix A) the KKR equation takes on the
form ∑

i ′,L′

(
τ

r,ii ′
LL′ (E) + δii ′δLL′(δm

i
L(E))

−1
)
βL

′
i ′ = 0 (10)

with

δmiL = (t iL)−1− (t rL)−1. (11)

t r is the single sitet-matrix of a suitably chosen reference system assumed to be site independent
andτ r is the scattering path matrix of the reference system determined by

τ r = ((t r)−1− g)−1. (12)

Evidently, in this screened representationτ r plays the role of the structure constantsgii
′
LL′

in the unscreened representation. The original wavefunction coefficientsbiL are connected to
the amplitudeβLi , in the screening representation, by

biL = δmiL βLi . (13)

In our previous paper [12] we derived an analytic expression forτ
r,ii ′
LL′ and discussed its

exponential decay with increasing site distance|i − i ′|. According to what was said there, we
may set the matrix elements ofτ r to zero whenever the site indicesj andi fulfil |j − i| > n for
some suitably chosenn, where in our numerical calculationsn = 3 turned out to be sufficient.
This way, the ‘screened’ KKR matrix elements are given by

Mii ′
LL′ = τ r,ii ′

LL′ + δii ′δLL′(δm
i
L)
−1 (14)

and the matrixMii ′
LL′ is seen to be a banded matrix. That the coupling of one site is restricted to

just neighbouring sites (up to thenth-nearest neighbours) allows us to split the complete chain
into different regions for each of which the KKR equation can be solved independently. The
effect of the neighbouring regions has then to be incorporated in certain boundary conditions,
as will be seen below in subsection 3.4.

We restrict ourselves to systems where the chain of potentials can be divided into three
regions in the following way (see figure 1): regions I and III contain all sites for whichi < −i1
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Figure 1. Here the index range is illustrated for some quantities.n which determines the width of
the banded matrix is assumed to be 3. In region II the single-site potentials are arbitrary whereas
the single-site potentials in regions I and II are all identical to each other.

or i > i1 respectively. In these two regions all the muffin-tin potentials are the same, say
Vi = V∞. Region II is finite and contains all sites in between site−i1 and sitei1. In this region
the muffin-tin potentials can be different from each other.

It will turn out that in this situation the problem of solving equation (10) is formally very
close to the problem of constructing scattering states for a single finite-ranged potential well.
In particular, we can introduce phase shifts and, exactly as in ordinary scattering theory,
these phase shifts can be related to the integrated density of states. The role analogous
to that of free space in scattering theory is taken here by the periodic chain of potentials
consisting of potentialsVi = V∞ throughout the whole chain, referred to in the following as
the homogeneous chain—or, alternatively, we shall refer to the homogeneous chain as the host
and the central inhomogeneity as the defect.

3.2. The homogeneous chain

From Floquet’s theorem [6, 7] it is clear that for every energy there exists a solutionβLj for
the homogeneous chain of the formβ0

j = v0eikj , β1
j = iv1eikj , wherek = k(E) is real inside

the band and complex with non-vanishing imaginary part inside band gaps. The coefficients
v0 andv1 can be determined from the lattice Fourier-transformed unscreened KKR equation,
which is given explicitly in reference [12], and the screening transformation equation (13). To
simplify the algebra in what follows we shall regard the coefficientsv0 and iv1 as well asβ0

j

andβ1
j as components of two-component vectors. For energies inside a band (which is the

case to which we restrict ourselves in this paper),v0 andv1 can be chosen to be real and for
every solution of the form

βhom,1
j =

(
v0

iv1

)
eikj (15)

there is another, independent solution at the same energy given by

βhom,2
j =

(
v0

−iv1

)
e−ikj . (16)

As the Schr̈odinger equation is a second-order linear differential equation, these two solutions
form a complete set. A more convenient symmetry-adapted choice is given by

J0
j =

1√
2
(βhom,1

j + βhom,2
j ) =

√
2

(
v0 coskj
−v1 sinkj

)
(17)
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and

J1
j =

1√
2i
(βhom,1

j − βhom,2
j ) =

√
2

(
v0 sinkj
v1 coskj

)
. (18)

J0 is unchanged under reflection at sitej = 0 (j → −j ; vL → (−1)LvL) whereasJ1

changes sign under reflection. Clearly this is of special advantage when the potential chain is
symmetric under this transformation. When we demandβ to be a solution to the KKR equation
for the homogeneous chain at every site, i.e. for everyi in equation (10),β can be written as
a superposition of the two special solutions just given. However, when we insist on the KKR
equation only for sites in regions I and III and do not care about sites in region II, there is
no reason any more forβ to be the same linear combination of our special solutions on the
left as on the right of region II. The componentsβj for j > 0 are completely independent of
the componentsβj for j < 0. Therefore we can construct two further independent solutions
which we will call the irregular solutions in the following way:

N0
j =

{
−J1

j for j < 0

J1
j for j > 0

N1
j =

{
J0
j for j < 0

−J0
j for j > 0

(19)

respecting again the symmetry in the sense thatN0 is symmetric andN1 is antisymmetric
under reflections at sitej = 0. The values forj = 0 can be set to 0.

3.3. Asymptotics and phase shifts

Our intention is to use the set of four vectors defined above to describe the behaviour of
the solutions to the KKR equation for the inhomogeneous chain asymptotically far away
from region II. Clearly, in the vicinity of the inhomogeneity, it will not be possible to write
the solution as a superposition of the homogeneous solutionsJL andNL; thus we need an
extra term to account for this pre-asymptotic behaviour. That is, we search for solutions to
equation (10) of the form

βj =
1∑

L=0

ALJ
L
j +

1∑
L=0

BLN
L
j +Cj (20)

where the correctionCj falls off exponentially outside the central segment containing the
inhomogeneity. Note thatL here refers to the symmetry under reflection of thewholechain.
This way, the asymptotic behaviour ofβ is parametrized by the four real coefficientsAL, BL
and the pre-asymptotic corrections are given byC.

To show that a decomposition of the form of equation (20) is in fact possible, we will now
consider an arbitrary solution of the screened KKR equation, equation (10), and will show that
the physically relevant solutions can be written in the form given in equation (20). Equation (10)
is a homogeneous linear equation with a banded matrixM given in equation (14) with only the
2n + 1 central elements in every row being non-zero. This implies that 2n elements ofβj , say
(βj1

,βj1+1, . . . ,βj1+2n−1) = xj1 may be chosen arbitrarily. Equation (10) then implies that the
elements(βj1+1,βj1+2, . . . ,βj1+2n) = xj1+1 can be obtained by a linear transformation from
the chosen 2n elementsxj1. And so canxj1+2 be obtained fromxj1+1, and so on. When all
the indices involved are in region III, the matrix describing the step fromxj toxj+1 is always
the same, independent ofj , and so themth power of this matrix determines the elements
xj1+m. Now xj1 can be decomposed into contributions which correspond to eigenvalues of
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this matrix with modulus one, smaller than one, or bigger than one. The contributions of the
first kind correspond to eigenmodes of the homogeneous system and therefore generate the
homogeneous solutions properly described by the asymptotic part in equation (20). If the
contribution corresponds to eigenvalues with modulus smaller than one its influence falls off
exponentially and only the contribution corresponding to eigenvalues with modulus bigger
than one are not within the realm of theansatzequation (20). But these contributions lead to
exponentially growing amplitudes and therefore are unphysical. In fact it will turn out that
the coefficientsAL andBL will be determined by demanding these exponentially growing
contributions not to appear. The situation is somewhat similar to a single (three-dimensional)
potential well at negative energies. When the Schrödinger equation for this case is integrated
outwards starting from inside the potential well, there will also be contributions, in general,
which blow up exponentially outside the potential well. The eigenenergies are determined
as those energies at which these contributions do not appear. On the other hand, there are
important differences between this case and the situation discussed here which are due to the
fact that we are dealing here with discrete quantities and not with continuous functions. In
our case, for example, the exponentially growing contributions appear also for energies at
which the reference system has periodic solutions in contrast to the potential well where the
asymptotic solutions are either oscillating or show exponential behaviour depending on the
energy.

For further reference we rewrite equation (20) in the form

βj =
1

2
(A0 +B1)(J

0
j −N1

j ) +
1

2
(A1− B0)(J

1
j +N0

j )

+
1

2
(A0 − B1)(J

0
j +N1

j ) +
1

2
(A1 +B0)(J

1
j −N0

j ) +Cj . (21)

Here, the terms are arranged such that the first two terms on the r. h. s. vanish wheneverj < 0
and the third and fourth term vanish ifj > 0. In the trivial homogeneous case, where all
the single-site potentials in the whole chain are the same, the solutions are clearly given by
the two regular solutionsJL, so in this caseBL = 0 andC = 0 whereasAL can be chosen
arbitrarily. In the general case (i.e. arbitrary potentials in the intermediate region), we expect
the asymptotic behaviour of the solutionsβ to be described by a two-dimensional subspace of
the space spanned by the four vectorsJLj andNL

j . That is, we have to find two linear relations
between the coefficientsAL andBL. In scattering theory the analogue to this linear relationship
is described by thet-matrix. Here it will turn out that this relation can be expressed by a transfer
matrix connecting the asymptotic behaviour to the left to the asymptotic behaviour to the right.
In the case where the potential chain is symmetric with respect to site 0, the solutions can be
chosen to be symmetric or antisymmetric, meaning that there is one relation betweenA0 and
B0 and another one betweenA1 andB1 but coefficients with differentL are unrelated. So we
can write

BL = − tanδLAL (22)

with phase shiftsδL. The definition is such that the symmetric solution is asymptotically
proportional to

βj =
√

2

(
v0 cos(k|j | + δ0)

−sgnjv1 sin(k|j | + δ0)

)
(23)

and the antisymmetric solution is asymptotically proportional to

βj =
√

2

(
sgnjv0 sin(k|j | + δ1)

v1 cos(k|j | + δ1)

)
(24)
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as can be verified by using equation (22) in the asymptotic part ofβ as given in equation (20).
Thus the term ‘phase shift’ is justified. We will see later that phase shifts can be introduced also
for the non-symmetric potential chain. Phase shifts for one-dimensional scattering problems
have already been introduced by Sugiyama [14]. But in Sugiyama’s paper the phase shifts
are defined with respect to a constant background potential (jellium) whereas our reference
system is the homogeneous potential chain.

3.4. Calculation of the pre-asymptotic part

Before considering the question of how to determine the relations between the various
coefficientsAL andBL, i.e. the phase shifts or the transfer matrix, let us assume that we
know the answer and turn to the determination of the pre-asymptotic correctionC for a given
set ofAL andBL. To this end we first show that forβ of the form of equation (20) the KKR
equation actually reduces to a finite-dimensional matrix equation. The vector components
(MJL)j and(MNL)j are zero for|j | > i1 + n becauseJL andNL are solutions to the KKR
equation for that range of site indices. (Remember that for these sites the single-site potentials
are assumed to be all the same and that the KKR matrix couples one site only to neighbouring
sites up to thenth-nearest neighbours.) Furthermore,Cj is supposed to be approximately zero
for sufficiently large absolute values of the site indexj , say|j | > i2 − n. This ensures that
(MC)j is zero whenever|j | > i2, wherei2 − n > i1 is assumed for a suitable choice ofi2
(cf. figure 1). Therefore, when only solutions of the form of equation (20) are considered, the
KKR equation reads

M̂Ĉ = −
1∑

L=0

ALM̂JL −
1∑

L=0

BLM̂NL (25)

where the hat denotes restriction of the site indices to|j | < i2. Note thatM̂JL is clearly
not the same asM̂ĴL. Equation (25) can be seen as the KKR equation for region II where
the inhomogeneity, i.e. the right-hand side, is due to the prescribed asymptotic behaviour. As
M̂ is a finite-dimensional banded matrix the inversion can be done numerically, soR̂ can be
calculated from

Ĉ =
1∑

L=0

ALĈ
(J)
L +

1∑
L=0

BLĈ
(N)
L (26)

with

Ĉ
(J)
L = −M̂−1M̂JLĈ

(N)
L = −M̂−1M̂NL. (27)

C now is simply constructed from̂C by setting all the additional components to zero:

Cj =
{
Ĉj for |j | < i2

0 otherwise.
(28)

3.5. Calculating the asymptotics

Recall that in deriving the finite-dimensional form of the KKR equation, equation (25), we
assumedCj to be zero for|j | > i2−n. By demanding this boundary condition to be fulfilled as
well as possible, the relations between the coefficientsAL andBL are determined. Numerically,
this can be done by introducing the function

n(AL,BL) =
−i2+n∑
j=−i2+1

|Ĉj |2 +
i2−1∑
j=i2−n

|Ĉj |2 (29)
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with Ĉ taken as functions ofAL andBL as given by equation (26). Minimizing it under the
constraint

∑
L(A

2
L +B2

L) = constant yields the eigenvalue equation

Y


A0

A1

B0

B1

 = λ

A0

A1

B0

B1

 (30)

with the 4× 4 matrix

Yss ′ =
−i2+n∑
j=−i2+1

Ĉs
j · Ĉs ′

j +
i2−1∑
j=i2−n

Ĉs
j · Ĉs ′

j (31)

where the indicess ands ′ label the four combinations(J, 0), (J, 1), (N, 0), (N, 1) in this
order. The eigenvalueλ is a Lagrange multiplier due to the constraint stated above. Two of
the four eigenvectors correspond to minima ofn(AL,BL). Denoting them by superscripts (1)
and (2), the general asymptotic behaviour consistent with the KKR equation is described by

A0

A1

B0

B1

 = 2∑
r=1

χr


A
(r)
0

A
(r)
1

B
(r)
0

B
(r)
1

 (32)

with two arbitrary coefficientsχr . Accordingly the general solution can be written as a super-
position of the form

β =
2∑
r=1

χr

(∑
L

A
(r)
L (J

L +C(J )
L ) +

∑
L

B
(r)
L (N

L +C(N)
L )

)
. (33)

Equation (32) describes the possible asymptotic behaviour of the solutions and it is useful
to recast it in a form explicitly displaying the transfer matrixT . Equation (32) is equivalent to
demanding that

T
(
A0 +B1

A1− B0

)
=
(
A0 − B1

A1 +B0

)
(34)

which expresses the amplitudes describing the asymptotic behaviour to the right as a linear
function of the amplitudes describing the asymptotic behaviour to the left.T in terms of the
special solutionsA(r)L , B(r)L is given by

T =
(
A
(1)
0 − B(1)1 A

(2)
0 − B(2)1

A
(1)
1 +B(1)0 A

(2)
1 +B(2)0

)(
A
(1)
0 +B(1)1 A

(2)
0 +B(2)1

A
(1)
1 − B(1)0 A

(2)
1 − B(2)0

)−1

. (35)

It may be helpful to note that we have arrived at the above relation by matching the part of
the solution inside the potential range to the asymptotic part outside, similarly to the way in
which in ordinary scattering theory thet-matrix is defined. Only the procedure of matching is
different here.

Note that so far we have imposed no boundary conditions onβ at infinity. In the next
section we will remedy this omission.

3.6. Boundary conditions

With the method described in the previous section we find a two-dimensional space of solutions
to the KKR equation (equation (10)) for every energy for which bulk solutions exist. In order to
find the density of states and expectation values, we somehow have to apply further boundary
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conditions which allow only for a discrete set of eigenenergies and well defined eigenvectors.
Therefore, we will now investigate how periodic boundary conditions can be applied.

Forj being a site in the asymptotic regime to the left, periodic boundary conditions imply

1∑
L=0

(ALJ
L
j +BLN

L
j ) =

1∑
L=0

(ALJ
L
j+N +BLN

L
j+N ) (36)

whereN is the arbitrarily large periodicity length chosen. To get explicit expressions we choose
the site indexj such thatj < −i2 andj + N > i2. With this restriction for the site index,
the asymptotic solutionsNL can be expressed in terms ofJL via equation (19). Furthermore,
we have, from the explicit form for theJ (equations (17) and (18)) and straightforward use of
trigonometric identities,

J0
j+N = cos(kN )J0

j − sin(kN )J1
j

J1
j+N = sin(kN )J0

j + cos(kN )J1
j .

(37)

Thus equation (36) can be rewritten in a form only containingJ0
j andJ1

j . Equating the
corresponding coefficients yields after some algebra

cos(kN )(A0 +B1)− sin(kN )(A1− B0) = A0 − B1

sin(kN )(A0 +B1) + cos(kN )(A1− B0) = A1 +B0.
(38)

This equation has the same form as equation (34) with the transfer matrixT replaced by a
rotation about the anglekN . It has two important implications. Firstly, as the transfer matrixT
is not, in general, unitary, equation (38) selects those vectors from the two-dimensional space
described by equation (32) which have the same magnitude for the amplitude in the asymptotic
regime to the right as to the left. That is,

(A0 +B1)
2 + (A1− B0)

2 = (A0 − B1)
2 + (A1 +B0)

2. (39)

Secondly, only thosek-numbers for whichkN is equal to the angle between the vectors
((A0 +B1), (A1−B0)) and((A0−B1), (A1 +B0)) for those solutions just selected by the first
implication are allowed by the periodic boundary conditions.

Equation (39) is equivalent to

A0B1− A1B0 = 0 (40)

which, due to equation (32), is a quadratic equation forχr , namely∑
r,r ′
χrMrr ′χr ′ = 0 (41)

with

Mrr ′ = A(r)0 B
(r ′)
1 − A(r)1 B

(r ′)
0 +A(r

′)
0 B

(r)
1 − A(r

′)
1 B

(r)
0 . (42)

The solutions can be written in terms of the eigenvectorsEw1 and Ew2 of the symmetric matrix
M. Calling the respective eigenvaluesε1 andε2, one easily checks that

Eχ =
√
|ε2| Ew1±

√
|ε1| Ew2 (43)

solves equation (41) if and only ifε1ε2 6 0. It is important to note that equation (41)
can be fulfilled not only for discrete values ofk but also for whole intervals, in contrast
to equation (38). Formally, this is due to the absence of the fast-oscillating trigonometric
functions in equation (40) which are present in equation (38). Therefore by means of
equation (41) and (32) the coefficientsAνL andBνL are defined as smooth functions ofk.
The subscriptν labels the two solutions which result from the choice of sign in equation (43).
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We now introduce the angle 2δν = 2δν(k) between the vectors((Aν0 +Bν1), (Aν1−Bν0)) and
((Aν0 − Bν1), (Aν1 +Bν0)):

cos 2δν = A2
ν0 +A2

ν1− B2
ν0 − B2

ν1

A2
ν0 +A2

ν1 +B2
ν0 +B2

ν1

sin 2δν = −2
Aν0Bν0 +Aν1Bν1

A2
ν0 +A2

ν1 +B2
ν0 +B2

ν1

.

(44)

The sign of the angleδν and the prefactor 2 is chosen such that, in the case of a symmetric
potential chain,δν becomes the phase shift defined in equation (22) as will be shown below.
With this definition, equation (38) implies

δν(k) = −1

2
kN (modπ). (45)

This equation now determines thek-valueskν allowed by the boundary conditions. The
corresponding eigenstates are determined by the amplitudesAνL(kν) andBνL(kν) and the
eigenenergy is given byEν = E(kν), whereE(k) is the dispersion relation of the homogeneous
chain. The normalization of the eigenstates will be discussed in appendix B.

Herewith the construction of the solutions to the KKR equation is complete. In the next
section we will discuss the calculation of expectation values. But before doing so let us once
more specialize to the symmetric potential chain as an illustration. In the case of a symmetric
potential chain we know that the solutions to the KKR equation can be chosen to be symmetric
or antisymmetric. That is,A(r)L andB(r)L can be chosen to be of the formA(r)L ∝ δLr and
B
(r)
L ∝ δLr with r = 0 labelling the symmetric solution andr = 1 labelling the antisymmetric

solution. The diagonal elements of the matrixM defined in equation (42) are zero in this case
and soχ = (1, 0) andχ = (0, 1) solve equation (41). That is,A0 = A(r)L andBL = B(r)L ,
with r = 0 or r = 1, solve equation (40). This can be clearly seen directly and is expected
from symmetry considerations. Using the symmetric solution (A1 = B1 = 0), equation (44)
implies tanδ = −B0/A0 which is just the definition of the phase shift (equation (22)). Using the
antisymmetric solution the same result is found. Equation (45), in the special case considered
here, also follows directly by applying the periodic boundary conditions to equation (23).

As a typical example, in figure 2 the phase shiftsδL(E) in units ofπ are shown for a chain
of square-well potentials where the intermediate region (region II in figure 1) contains 18 sites
with potential wells−0.2 Ryd deep. All the other wells are−0.5 Ryd deep. The Wigner–Seitz
radius has been chosen to be 1 au and the lattice constant to be 2.2 au. For energies below
−0.2 Ryd the curves drop significantly. This can be understood semiquantitatively in the
following way: were the potential in the intermediate region the same as in the outer region,
the integrated density per site would beN0(E), which for small energies behaves like

√
E − E0

with E0 ≈ −0.5 Ryd. With the 18 potentials in the intermediate region only−0.2 Ryd deep,
this space is not available any more for electrons with energy lower then−0.2 Ryd, so by this
‘hand-waving’ argument we would expect(δ0(E) + δ1(E))/π ≈ −18N0(E), which in fact as
we have checked is a fairly good approximation to the sum of the curves shown in figure 2 for
energies in between−0.5 and−0.2 Ryd. Finally, it is interesting to note that, qualitatively,
these curves look like phase shifts of a single repulsive potential well in one-dimensional space.

4. Calculation of expectation values

Some care is needed when calculating expectation values. When the properly normalized
single-particle states are known, the ground-state expectation value of some one-particle
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Figure 2. Here the phase shiftsδL divided byπ as a function of energy are shown. The parameters
describing the underlying chain of square-well potentials are given in the text.

operator can be calculated as a sum over all the occupied states:

〈Ô〉 =
∑
i occ

õi (46)

whereõi is the expectation value of̂O in the single-particle state labelled byi. The aim of
this section is to transform the sum into ak-space integral. This is easy for the homogeneous
chain where the allowedk-values are given by

k = k0
i = i

2π

N
and therefore are equidistantly distributed on the real axis. In the more general case where
the potential chain is homogeneous only in the asymptotic regime we still can characterize
the eigenstates by their asymptotic wavenumberk and a labelν which accounts for the two
solutions of equation (41). We write the asymptotic wavenumberk as

k = kνi = i
2π

N
+ δkνi = k0

i + δkνi .

Equation (45) implies thatδkνi can be identified up to a prefactor with the phase shiftδνi
associated with the statei: δkνi = −2δνi /N . Thus, writing the one-particle expectation values
as a function ofk one can rewrite the sum as ak-space integral:

〈Ô〉 =
∑
ν

∑
i(k0

i −2δνi /N6kF)

õν
(
ki − 2

δνi

N

)

=
∑
ν

N
2π

∫ kF−δkνF

0
dk

{
õν(k)− 2

dõν

dk

δν(k)

N

}
=
∑
ν

{
N
2π

∫ kF

0
dk õν(k) +

δν(kF)

π
õν(kF)− 1

π

∫ kF

0
dk

dõν

dk
δν(k)

}
=
∑
ν

{
N
2π

∫ kF

0
dk õν(k)

(
1 +

2

N
dδν(k)

dk

)
+
δν(0)

π
õν(0)

}
. (47)
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Thus the fact that thek-values which are allowed by the boundary conditions are not equidistant
is reflected by a weight

1 +
2

N
dδν(k)

dk
in thek-space integral.

Clearly, the total number of statesN(E) below a given energy is an expectation value of
special interest and is obtained by settingõ = 1 in equation (47):

N(E) = N
π
k(E) +

1

π

∑
ν

∫ k(E)

0

dδν(k)

dk
dk +

∑
ν

δν(0)

π
= N0(E) +

∑
ν

δν(E)

π
. (48)

This is the analogue to the relation known as the Friedel sum [8] which relates the phase shift
at energyE to the integrated density of statesN(E). A completely different derivation of this
result can be found in reference [17].

For other expectation values, the integral equation (47) has to be solved numerically. This
task can be simplified by noting that the integration weight can be absorbed in the normalization
of the wavefunction. As discussed in appendix B, the wavefunction

ψ̃ν(k, x) =
(

1− 1

N
dδ

dk

)
ψν(k, x) (49)

is normalized to 1 within the periodicity interval ifψν(k, x) has asymptotically the same
amplitude as the homogeneous solution. The point to note here is that the integrand

õν(k)

(
1− 2

N
dδ

dk

)
≈ õν(k)

(
1− 1

N
dδ

dk

)2

is the expectation value of̂O with the wavefunctionψν(k, x) which isnotnormalized to 1 but
normalized according to its asymptotic behaviour. Therefore we can write

〈Ô〉 = N
∑
ν

∫ kF

0
dk oν(k) with oν(k) = 〈ψν |Ô|ψν〉 (50)

which now is an ordinaryk-space integral which contains no derivatives with respect tok.
As an example we have calculated the charge per site for the potential already described

above with a Fermi energy of 1.4 Ryd. The result is shown in figure 3. The Friedel oscillations
are clearly seen in both the intermediate and the outer region. As the Fermi energy is close
to the upper edge of a band of the homogeneous chain, the oscillation wavelength in the
outer regime is quite long. The Fermi energy is not so close to the edge of the homogeneous
chain, consisting merely of 0.2 Ryd deep potentials, and therefore the wavelength of the charge
oscillations in the intermediate regime is shorter. (For further discussion of Friedel oscillations
in one-dimensional potential chains, see reference [12].)

5. Summary

We have shown how the solutions of the KKR equation for an inhomogeneous chain of potential
wells in one spatial dimension can be constructed. For our method to work it was absolutely
essential to have the idea of screening available, as only the bandedness of the KKR matrix
allowed us to develop a formalism which, like in usual scattering theory, characterizes a
solution, in the presence of a defect, completely by its asymptotic behaviour in the host.
Indeed, we defined generalized phase shiftsδL(E) which describe the scattering properties
of an inhomogeneity in the potential. Interestingly, they are directly related to the integrated
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Figure 3. Here the charge per site and symmetry character (L = 0,L = 1) is shown. The Fermi
energy (1.4 Ryd) was chosen to lie slightly below the upper band edge of the lowest-lying band.

density of states, in perfect analogy to Friedel’s sum featured in the theory of scattering from
point defects in three dimensions.

Evidently, in the case of an interface separating two regular arrays of potential wells,
natural and powerful concepts for characterizing the electronic states of the perturbed system
are the reflection and transmission coefficients [3, 17]. In the case of a deformed region
completely embedded in a host, the generalized phase shifts that we have introduced above
are similarly powerful tools. As we have demonstrated, our approach allows us to determine
these phase shifts directly from the asymptotic behaviour of the wavefunctions. Thus it would
be desirable to generalize the arguments of this paper to the three-dimensional case of an
infinite sheet embedded between two semi-infinite solids, as would be useful in studies of
experimentally very interesting tri-layer systems. The main difficulty then will be that the
asymptotic behaviour of the wavefunction at a given energy will be a superposition of all bulk
states with a givenk|| and that energy, instead of the two solutions which contribute in the
one-dimensional case discussed here. But we expect that the concept of transfer matrices will
still apply, although the implementation of the boundary conditions will be more complicated.
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Appendix A

In this appendix we rederive the KKR equation using a reference system different from the
vacuum. The approach used here is very similar to the original one taken by Andersenet al [1];
see also reference [16]. Instead of usingjL andhL which are the regular and irregular solutions
to the free one-dimensional Schrödinger equation as given in section 2, we use now

zL(E, xi) = t rL(E)−1jL(E, xi)− i√
E
hL(E, xi) (A.1)
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andjL, which are the regular and irregular single-site solutions (in the interstitial region) in the
presence of some reference potential, to write down the wavefunction in the interstitial region
near some site of the potential chain.t r is the scattering matrix (t-matrix) describing the
single-site contributions to this reference potential, where we assume the single-site potentials
to be symmetric,t thus being diagonal. That is, we write

9(E, x) =
1∑

L=0

αiLzL(E, xi) +
1∑

L=0

βiLjL(E, xi) (A.2)

for x being in the interstitial region around theith scatterer. The sum runs over the symmetric
(L = 0) and antisymmetric (L = 1) part of the wavefunction. The relation betweenα andβ is
then given by the requirement that the smooth continuation of9 to the region of thephysical
potential is a regular function at the origin. This results in a linear relationship betweenα and
β. In order to express this relationship in terms of thet-matrix corresponding to the potential
Vi , we re-expressz in the above equation (A.2) in terms of the free solutionsj andh (see
equation (A.1)):

9(E, x) =
∑
L

(βiL + t rL(E)
−1αiL)jL(E, xi)−

i√
E

∑
L

αiLhL(E, xi). (A.3)

As the coefficients in this equation are directly related to the definition of thet-matrix, we can
immediately read off

− i√
E
αiL =

1

i
√
E
tL(E)(αLt

r
L(E)

−1 + βL) (A.4)

which yields the linear relation

βL = (tL(E)−1− t rL(E)−1)αL (A.5)

that we were looking for. Introducing the abbreviation

δmL = t−1
L − (t rL)−1 (A.6)

the result finally reads

βL = δmL αL (A.7)

where the site index has been suppressed.
So far, the wavefunction equation (A.2) has been defined separately for the neighbourhood

of every scatterer and thus, in general, will be discontinuous at the cell boundaries. However,
9 can also be expanded in the form

9(E, x) =
∑
i

∑
L

ciLhL(E, xi) (A.8)

which is valid throughout the whole interstitial region.9 expressed by thisansatz
is automatically differentiable at the cell boundaries due to the differentiability of the
functionshL(E, xi), and furthermore fulfils the correct boundary conditions at infinity. The
KKR equation can now be derived from demanding that equation (A.2) (which guarantees
the differentiability at the muffin-tin radius) and (A.8) describe the same wavefunction. To
compare the two representations forx in the vicinity of theith scatterer, the irregular functions
hL(E, xj ) for j 6= i can be expanded in terms of the regular functionsjL(E, xi) centred at the
sitei with the structure constantsgijLL′ as expansion coefficients:

9(E, x) =
∑
L

ciLhL(E, xi) + i
√
E
∑
j

∑
LL′

jL(E, xi)g
ij

LL′(E)c
j

L′ . (A.9)
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This expansion of the wavefunction can be easily converted into an expansion in terms of the
functionsz andj :

9(E, x) = i
√
E
∑
L

ciLzL(E, xi) + i
√
E
∑
j

∑
LL′

c
j

L′(g
ji

L′L(E)− δij δLL′ t rL(E)−1)jL(E, xi).

(A.10)

Comparing the expressions equation (A.2) and equation (A.10) leads to

α = i
√
Ec

β = i
√
E(g − (t r)−1)c

(A.11)

where we have switched over to matrix notation. Combining this with equation (A.6) and
eliminatingc, we get an equation determiningβ:

(g − (t r)−1)(δm)−1β = β. (A.12)

Here the inverse of the scattering path matrixτ r = ((t r)−1 − g)−1 of the reference system
appears; hence we can write

Mβ = 0 (A.13)

with the matrix

M = τ r + (δm)−1. (A.14)

This is the KKR equation in its screened form written with all indices in equation (10).

Appendix B

The aim of this appendix is to show that the wavefunction

ψ̃(k, x) =
(

1− 1

N
dδ

dk

)
ψ(k, x) (B.1)

with the periodicity lengthN , is properly normalized ifψ(E, x) is normalized such that
asymptotically it has the same amplitude as the normalized homogeneous solution. The
normalization of the homogeneous solution is an easy numerical task, since due to the
periodicity a spatial integral over a unit cell is all that one has to perform. The proof given
here is a generalization of Sugiyama’s proof [14] for asymptotically free wavefunctions.

Using the Schr̈odinger equation, the norm of a wavefunction can be expressed as∫ x2

x1

|ψ(x)|2 dx = 1

2

(
∂E

∂k

)−1 [
∂ψ

∂k

∂ψ∗

∂x
− ψ∗ ∂

2ψ

∂k ∂x

]x2

x1

(B.2)

wherex1, x2 are the lower and upper bounds respectively of the normalization interval. It is
convenient to writeψ given in equation (9) in the form

ψ(x) =
∑
L

b
j

LφL(xj ) (B.3)

with j labelling the unit cell in whichx is located. Letx1 be the left boundary of cellj1 andx2

the left boundary of cellj2 with j2− j1 = N and, by means of periodic boundary conditions,
b
j1
L = bj2

L . Equation (B.1) can then be rewritten as∫ x2

x1

|ψ(x)|2 dx = 1

2

(
∂E

∂k

)−1∑
LL′

{
b∗L
∂bL′

∂k

∣∣∣∣j2

j1

(
∂φ∗L
∂x

φL′ − φ∗L
∂φL′

∂x

)
x=−a/2

+ b∗LbL′
∣∣∣j2

j1

(
∂φ∗L
∂k

∂φL′

∂x
− φ∗L

∂2φL′

∂k ∂x

)
x=−a/2

}
. (B.4)
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Note that all expressions containingφ are evaluated at the left cell boundaryx = −a/2 (a is
the lattice constant) and are site independent for sites in the asymptotic regime. Now, the terms
proportional tob∗LbL′ are the same on both sides of the normalization interval and thus cancel
each other. Because the normalization integral is a real number, one can add the complex
conjugate expression and then divide by two, which yields after some rearrangement∫ x2

x1

|ψ(x)|2 dx = 1

4

(
∂E

∂k

)−1∑
LL′

[
b∗L
∂bL′

∂k
− ∂b

∗
L

∂k
bL′

]j2

j1

WLL′ (B.5)

with the abbreviation

WLL′ =
(
∂φ∗L
∂x

φL′ − φ∗L
∂φL′

∂x

)
x=−a/2

= −W ∗L′L. (B.6)

This WronskianWLL′ is a pure single-site quantity and is furthermore the same for all sites in
the asymptotic regime. The derivatives with respect tok and with respect tox have now nicely
separated.

Now, in order to proceed, more explicit expressions for the coefficientsbL have to be
used. But before dealing with the general expressions we turn to the special case of the
symmetric potential chain which is less troublesome and includes the important special case
of the homogeneous potential chain. For the symmetric solution, thebL are given by the
equations (23) and (24) together with equation (13), and the corresponding derivatives are
readily found to be

∂b0

∂k
= ∂(δm0 v0)

∂k

b0

δm0 v0
−
√

2δm0 v0 sin(k|i| + δ0)(|i| + δ′0)
∂b1

∂k
= ∂(δm1 v1)

∂k

b1

δm1 v1
− sgnj

√
2δm1 v1 cos(k|i| + δ0)(|i| + δ′0).

(B.7)

The primes on the phase shiftsδ denote derivatives with respect tok. AsmL andvL and their
k-derivatives are the same for every site in the asymptotic regime, the first terms in the two
expressions do not contribute to equation (B.5). Furthermore, the terms withL = L′ in the
sum in equation (B.5) are zero becausebL ∂b

∗
L/∂k is real. The remaining terms are∫ x2

x1

|ψ(x)|2 dx = 1

2

(
∂E

∂k

)−1 [
(|j | + δ′0) sgnj

]j2

j1
v0v1

{−δm∗0 δm1W01 + δm∗1 δm0W10
}

=
(
∂E

∂k

)−1

(N + 2δ′0)v0v1<{−δm∗0 δm1W01}. (B.8)

As(v0, v1)are determined such that the homogeneous solution(δ′0 = 0) is properly normalized,
it follows that (

∂E

∂k

)−1

Nv0v1<{−δm∗0 δm1W01} = 1. (B.9)

And therefore∫ x2

x1

|ψ(x)|2 dx = 1 + 2
δ′0
N
=
(

1− δ′0
N

)−2

. (B.10)

This immediately implies equation (B.1) if dδk/dk � 1 is used. For the antisymmetric
solution, the same equation results, withδ0 replaced byδ1.

In order to deal with the general case, we first establish an expression for the distance
between two neighbouringk-points allowed by the boundary conditions. Equation (38) which
determines the allowedk-values can be written in the form

α(k)− β(k)eikN = 0 β(k)∗ − α(k)∗eikN = 0 (B.11)
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with

α(k) = A0 − iA1 + iB0 +B1 β(k) = A0 − iA1− iB0 − B1 (B.12)

whereAL, BL are real. Equation (40) implies

|α(k)|2 = |β(k)|2 = A2
0 +A2

1 +B2
0 +B2

1 = 1 (B.13)

where the last equality can be achieved by simultaneous scaling ofA0, A1, B0 andB1. We
will see at the end that this setting ensures the proper asymptotic behaviour. Now letk1 and
k2 = k1 + 1k both fulfil equation (B.11). According to the discussion in section 4,k1 can
be written ask1 = i1 2π/N + δk1. k2 is assumed to be the next bigger allowedk-value,
i.e.k2 = (i1 + 1)2π/N + δk2. Therefore,

N 1k = 2π +1φ with 1φ = 2π
(δk2 − δk1)

2π/N
= 2π

d δk

dk
= −4π

N
dδ

dk
(B.14)

and

2π � 1φ � 1k � 1φ

N
(B.15)

which can be achieved by choosingN big enough. Writing down the first of equations (B.11)
for k = k2, expandingα(k2) andβ(k2) aroundk1, expanding furthermore the exponential
exp(i(k +1k)N ) = (1 + i1φ) exp(ikN ) and using exp(ik1N ) = α(k1)/β(k1) yields

1φ

1k
= i

(
β ′

β
− α

′

α

)
(B.16)

with the prime denoting taking the derivative with respect tok. As only the leading order is of
interest here,1k may now be set to 2π/N . Using equation (B.14) then yields

dδ

dk
= − i

2

(
β∗β ′

|β|2 −
α∗α′

|α|2
)

(B.17)

and, with equation (B.12) and equation (40),
dδ

dk
= −(A0B

′
0 − A′0B0 +A1B

′
1− B1A

′
1). (B.18)

Now we are going to evaluate equation (B.5) for the general case where the coefficientsb

are given by equations (33) and (13):

b0 =
√

2δm0 v0((A0 − sgnjB1) cos(kj) + (A1 + sgnjB0) sin(kj))

b1 =
√

2δm1 v1((−A0 + sgnjB1) sin(kj) + (A1 + sgnjB0) cos(kj))
(B.19)

and the derivatives with respect tok read
∂b0

∂k
= ∂(δm0 v0)

δk

b0

δm0 v0
+
√

2δm0 v0

{
cos(kj)

(
∂

∂k
(A0 − sgnjB1) + j (A1 + sgnjB0)

)
+ sin(kj)

(
∂

∂k
(A1 + sgnjB0)− j (A0 − sgnjB1)

)}
(B.20)

∂b1

∂k
= ∂(δm1 v1)

δk

b1

δm1 v1
+
√

2δm1 v1

{
sin(kj)

(
∂

∂k
(−A0 + sgnjB1)− j (A1 + sgnjB0)

)
+ cos(kj)

(
∂

∂k
(A1 + sgnjB0) + j (−A0 + sgnjB1)

)}
. (B.21)

For the same reasons as discussed for the symmetric potential chain, the terms containing
∂(δm1 v1)/δk do not contribute to equation (B.5) and neither doL = L′ terms. Thus the
relevant term is[

b∗0
∂b1

∂k
− ∂b

∗
1

∂k
b0

]j2

j1
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which after some algebra is found to read[
b∗0
∂b1

∂k
− ∂b

∗
1

∂k
b0

]j2

j1

= −2v0v1 δm
∗
0 δm1N

(
1 +

2

N
dδ

dk

)
. (B.22)

And finally the normalization integral is obtained as∫ x2

x1

|ψ(x)|2 dx =
(
∂E

∂k

)−1

Nv0v1

(
1 +

2

N
dδ

dk

)
<{−δm∗0 δm1W01}. (B.23)

Comparing the part of this expression which scales withN with the normalization for the
homogeneous solution equation (B.9) shows that the asymptotic part ofψ is properly norm-
alized. Thus, settingA2

0 +A2
1 +B2

0 +B2
1 = 1 in equation (B.13) is now justified and we finally

find ∫ x2

x1

|ψ(x)|2 dx =
(

1 +
2

N
dδ

dk

)
≈ 1

/(
1− 1

N
dδ

dk

)2

(B.24)

which implies equation (B.1).
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[15] Szunyogh L,Újfalussy B, Weinberger P and Kollár J 1994Phys. Rev.B 492721
[16] Weinberger P, Turek I and Szunyogh L 1997Int. J. Quantum Chem.63165
[17] Wildberger K, Zeller R, Dederichs P H, Kudrnovský J and Weinberger P 1998Phys. Rev.B 5813 721
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